
The Connectionist Scientist Game:

Rule Extraction and Refinement in a Neural Network

Clayton McMillan, Michael C. Mozer, & Paul Smolensky

CU-CS-530-91 May 1991

Department of Computer Science and
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430 USA

(303) 492-4103
(303) 492-2844 Fax
mozer@cs.colorado.edu
To appear in: Proceedings of the Thirteenth Annual Conference of
the Cognitive Science Society, Hillsdale, NJ: Erlbaum. 1991.

- 1 -

Abstract
Scientific induction involves an iterative process of

hypothesis formulation, testing, and refinement. People
in ordinary life appear to undertake a similar process in
explaining their world. We believe that it is instructive
to study rule induction in connectionist systems from a
similar perspective. We propose an approach, called the
Connectionist Scientist Game, in which symbolic condi-
tion-action rules are extracted from the learned connec-
tion strengths in a network, thereby forming explicit
hypotheses about a domain. The hypotheses are tested
by injecting the rules back into the network and continu-
ing the training process. This extraction-injection pro-
cess continues until the resulting rule base adequately
characterizes the domain. By exploiting constraints
inherent in the domain of symbolic string-to-string map-
pings, we show how a connectionist architecture called
RuleNet can induce explicit, symbolic condition-action
rules from examples. RuleNet’s performance is far supe-
rior to that of a variety of alternative architectures we’ve
examined. RuleNet is capable of handling domains hav-
ing both symbolic and subsymbolic components, and
thus shows greater potential than purely symbolic learn-
ing algorithms. The formal string manipulation task per-
formed by RuleNet can be viewed as an abstraction of
several interesting cognitive models in the connectionist
literature, including case role assignment and the map-
ping of orthography to phonology.

Introduction
A cognitive behavior may be characterized in terms of a
transformation from an initial cognitive state to a target
cognitive state. There are many ways of specifying this
transformation. At one extreme, an enumeration of
input/output pairs provides a description of the transfor-

This research was supported by NSF Presidential Young
Investigator award IRI-9058450, grant 90-21 from the James
S. McDonnell Foundation, and DEC external research grant
1250 to MM; NSF grants IRI-8609599 and ECE-8617947 to
PS; by a grant from the Sloan Foundation’s computational
neuroscience program to PS; and by the Optical Connectionist
Machine Program of the NSF Engineering Research Center for
Optoelectronic Computing Systems at the University of Colo-
rado at Boulder.

mation, but such a list is not particularly satisfying or
concise because it does not explicitly capture regulari-
ties of a domain. An alternative is a set of symbolic con-
dition-action rules that provides an algorithm for
performing the transformation. The notion of explicit
rules has played an important role in cognitive modeling
because rules are a descriptive, readily comprehensible,
and powerful representational language, and because
people appear to exhibit rule-governed behavior when
performing higher cognitive tasks. However, rule-based
characterizations are often brittle and incomplete, and
mechanisms for learning condition-action rules from
scratch have not been extensively studied.

To model the process by which people acquire rules,
it is instructive to examine theory construction in scien-
tific domains. Scientists approach a domain first by
observation, and then, armed with initial intuitions, for-
mulate explicit hypotheses concerning regularities in the
domain. Such hypotheses can be tested by experimenta-
tion, allowing for an iterative refinement of the hypothe-
ses until eventually the hypotheses are consistent with
the observations. We call this process of iterative
hypothesis formulation and refinement the Scientist
Game. We conjecture that rule acquisition by people in
ordinary life involves a very similar process, one in
which people play the role of the scientist and the
hypotheses take the form of explicit rules in a given
domain.

This paper proposes a modification of the scientist
game, called the Connectionist Scientist Game, as a
technique for hypothesizing and refining a set of rules
through induction in a connectionist network. The Con-
nectionist Scientist Game is an iterative process that
involves first training a network on a set of input/output
examples, which corresponds to the scientist developing
intuitions about a domain. After a certain amount of
exposure to the domain, symbolic rules are extracted
from the connection strengths in the network, thereby
forming explicit hypotheses about the domain. The
hypotheses are tested by injecting the rules back into the
network and continuing the training process. This
extraction-injection process continues until the resulting
rule base adequately characterizes the domain.

Although the view held by many neural net research-
ers is that explicit rules are unnecessary (e.g., Rumelhart

The Connectionist Scientist Game:
Rule Extraction and Refinement in a Neural Network

Clayton McMillan, Michael C. Mozer, & Paul Smolensky

Department of Computer Science and
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430

- 2 -

and McClelland, 1986), the Connectionist Scientist
Game suggests that rules can be exploited in connec-
tionist networks in several important ways: 1) as a
means for better understanding the inner workings of a
network (McMillan & Smolensky, 1988), 2) as a tech-
nique for increasing learning speed, 3) as a means of
constraining – and thereby improving – generalization,
and 4) as a way of bridging the gap between sub-con-
ceptual and conceptual levels of cognitive processing
(Smolensky, 1988).

We describe an architecture called RuleNet, which,
based on a characterization of the task domain, plays the
Connectionist Scientist Game. Although connectionist
networks are often conceptualized as embodying
implicit rules, the RuleNet architecture embodies rules
explicitly. In the following sections we describe the
domain towards which this work is currently directed,
the task and network architecture, simulations that dem-
onstrate the potential for this approach, and finally,
future directions of the research leading towards more
general and complex domains.

Domain
We are interested in intrinsically rule-based domains
that map input strings of n symbols to output strings of n
symbols. Rule-based means that the mapping function
can be completely characterized by explicit, mutually
exclusive condition-action rules. A condition is a feature
or combination of features necessarily present in each
input in order for a given rule to apply, and an action
describes the mapping to be performed on each input if
the rule does apply. For example, a typical condition
might be that the symbol A must be present at the begin-
ning of the input string. The string ABCD meets this
condition, while the string BCDA does not. A typical
action might be to switch the first two symbols in the
input, replace the third symbol with the symbol A, and
copy the remainder of the input exactly to the output
string, e.g., ABCD → BAAD.

In these simulations we allow three types of condi-
tions: 1) a simple condition, which states that symbol s
must be present in slot x of the input string in order for a
rule to apply, 2) a conjunction of two simple conditions,
and 3) a disjunction of two simple conditions. The
action performed by a rule is to produce an output string
in which the value of each slot is either a constant or a
function of a particular input slot, with the additional
constraint that each input slot maps to at most one out-
put slot. In the present work, this function of the input
slots is the identity function, and a constant is any sym-
bol in the output alphabet.

The number of possible rules in a given domain is
dependent upon the length of the strings, n, and the size
k of the input/output alphabets. The number of possible

rules is:

which is an exponential function of n.
An example of such a rule for strings of length three

over the input/output alphabet {A, B, C, D, E, F, G, H}
is:

if (input1 = A ∧ input3 = G) then
 (output1 = input3, output2 = input2, output3 = B)

where inputα denotes slot α of the input string, and out-
putβ denotes slot β of the output string. As a shorthand
for this rule, we write [∧ A_G → 32B], where the square
brackets indicate this is a rule, the “∧” denotes a con-
junctive condition, and the “_” denotes a wildcard sym-
bol. A disjunction is denoted by “∨”.

This formal string manipulation task can be viewed as
an abstraction of several interesting cognitive models in
the connectionist literature. For example Miikkulainen
and Dyer (1988) have built a case role assignment net-
work that maps syntactic constituents of a sentence into
their semantic roles. This amounts to copying the repre-
sentation of say, a sentence subject, such as boy, to a role
slot in the output, such as agent. NETtalk (Sejnowski
and Rosenberg, 1987) and McClelland and Rumelhart’s
past tense model (1986) are two further examples of
problems that might be viewed as string mapping prob-
lems, although implementing them in the framework
described above requires slight modifications to the
original approach.

Task
The task RuleNet must perform is to induce a compact
set of rules that accurately characterize a set of training
examples. Note that any corpus of examples has at least
one set of rules that correctly characterizes the mapping
function, namely the set containing one rule per exam-
ple. However, this set of rules is trivial in that it is no
more interesting than an enumeration of the patterns
themselves. We consider the appropriate set of rules to
be the minimal set that completely describes the training
corpus. In this work, the training set for a given simula-
tion is generated using a set of prespecified rules as tem-
plates for creating valid examples. Input strings that
meet the conditions of several rules in the template set
are excluded. The rules are over strings of length four
and an alphabet of eight symbols, {A, B, C, D, E, F, G,
H}. For example, the following rules may be used to
generate these exemplars:

2 k 1+() n nk
2

−() ki n!
i!

()
2

i 0=

n

∑

[∨ _EG_→30E2]: GEAF→FGEA, BECE→EBEC
[∧ _BF_ →3G12]: EBFF→FGBF, DBFG→GGBF
[_F__ →30B1]: GFAB→BGBF,CFHD→DCBF F,

- 3 -

The patterns above are similar to those that form the
training corpus used in the simulations described later.
In general there is no guarantee that the underlying rule
base represents the minimal set that describes the train-
ing corpus. However, given that in our experiments the
number of rules is very small relative to the number of
examples, it is unlikely that a more compact set of rules
exists that describes the training set. Therefore, in our
simulations the target number of rules to be induced is
the same as the number used to generate the training
corpus.

There are several traditional, symbolic systems, e.g.,
COBWEB (Fisher, 1987), that induce rules for classify-
ing inputs based upon training examples. The power of
these systems lies in their ability to build complex con-
ditions that recognize relevant features of an input. It
seems likely that, given the correct representation, a sys-
tem such as COBWEB could learn rules that would
classify patterns in our domain. However, it is unclear
how such a system could also learn the action associated
with each class. Classifier systems (Booker, Goldberg,
& Holland, 1989) learn both conditions and actions, but
the actions are limited to passing an input feature
through unchanged, or writing a fixed feature to the out-
put. Although classifiers could easily be made to repre-
sent the symbolic strings of our domain, there is no
obvious way to map a symbol in slot α of the input to
slot β of the output.

Architecture
We propose a neural network architecture, called
RuleNet, based on the work of Jacobs, Jordan, Nowlan,
and Hinton (1991), that can implement string manipula-
tion rules of the type outlined above. As shown in Fig-
ure 1, RuleNet has three layers of units: an input layer,
an output layer, and an intermediate layer of condition
units. There are m rules represented in the network and
one condition unit per rule. The input layer activates the
condition units, which, to first approximation, partici-
pate in a winner-take-all competition. The winning con-
dition unit enables one set of connections from the input
layer to the output layer through a set of multiplicative
or gating connections. The input units then pass their

The RuleNet architecture.

input

output

m condition...

 Figure 1

...

single unit
layer of units

 units

activity through the enabled set of weights to activate
the output units.

The condition and action parts of a rule are imple-
mented in different subnets. In the condition subnet, the
net input to each condition unit i is computed,

where x is the input vector and ci is the incoming weight
vector to condition unit i. The activity of condition unit
i, pi, is then determined by a normalization:

The normalization enforces a competition among
condition units. The activation of condition unit i repre-
sents the probability that rule i applies to the current
input. In the action subnet there are m weight matrices
Ai, one per rule. A set of multiplicative connections
between each condition unit i and Ai determines to what
extent Ai will contribute activation to the output vector
y, calculated as follows:

Ideally, one condition unit is fully activated by a given
input.

Although this architecture is based on the work of
Jacobs et al., it is independently motivated in our work
by the demands of the task domain. The Jacobs architec-
ture divides up the input space into disjoint regions and
allocates a different local expert network to each sub-
space. A gating network determines the probability that
expert α will produce the correct output for a given
input vector x. During learning, weights are adjusted
using back propagation to increase the probability that
expert α produces the correct output and decrease the
probability that other experts produce any output at all
for x. In effect, each network competes to be the sole
network responsible for input x. RuleNet has essentially
the same structure as the Jacobs network, where the
action substructure of RuleNet serves as the local
experts and the condition substructure serves as the gat-
ing network. However, their goal—to minimize
crosstalk between logically independent subtasks—is
quite different than ours.

Input/output strings, such as AEG, are encoded as
binary vectors. We use a local representation of each
symbol and concatenate them together. The representa-
tion of the ith symbol in an alphabet of k symbols is a
subvector of length k in which the ith bit is 1 and the
remaining bits are 0. With the eight symbol alphabet {A,
B, C, D, E, F, G, H}, then, the representation of AEG is
composed of three subvectors of length eight concate-

neti 1 1 e
ci

Tx−
+()⁄=

pi
neti

netj
j
∑

=

y piAix
i

m

∑=

- 4 -

nated together: (10000000 00001000 00000010).
To precisely implement rules of the type discussed in

the previous section, it is necessary to impose some
restrictions on the values assigned to the weights in ci
and Ai. In ci, the first k weights detect the appropriate
symbol in the first slot of the input string, the next k
weights detect the symbol in the second slot, and so on,
up to the length of the string. Since this is a local repre-
sentation, one bit, at most, in each k-bit subvector
should be nonzero. For example, using the eight-symbol
alphabet, the vector ci that detects the simple condition
input1 = A is: (10000000 00000000 00000000 0). Con-
dition unit i will be activated only if there is an A in the
first slot of the input string. The final weight in ci is the
condition bias, θi, which is required to detect a conjunc-
tive condition. If the condition is a conjunction, as in
[∧ A_G → 021], θi must be negative to compensate for
the effect of one input; that is, the net input will be posi-
tive only if both symbols are present. If the condition is
simple or a disjunction, θi should be zero to allow the
net input to be positive if any input line is active. To
encourage the condition weights to develop such a
structure, it is necessary to initialize all weights in ci
except θi to non-negative values, and then set a lower
bound of zero on those weights during training.

Similarly, if we wish the actions carried out by the
network to correspond to the string manipulations
allowed by our rule domain, it is necessary to impose
some restrictions on the values assigned to the weights
in Ai. An action matrix Ai has an n × n block form,
where n is the length of input/output strings. Each block
is a k × k submatrix, and must be either the identity
matrix or the zero matrix. The block at block-row α,
block-column β of Ai copies inputα to outputβ if it is the
identity matrix, or does nothing otherwise. An addi-
tional constraint that only one block may be nonzero in
block-row α or block-column β of Ai ensures that there
is a unique mapping from inputα to outputβ. If outputβ is
to be a constant, then block-column β must be all zero
except for the action bias weights in block-column β.
Further, because the output is a local representation, at
most one bias in block-column β should be nonzero.

To ensure that during learning every block
approaches the identity or zero matrix, we constrain the
off-diagonal terms to be zero and constrain weight
changes within a block to be equal for all weights on the
diagonal, thus limiting the degrees of freedom to one
parameter within each block. By imposing these restric-
tions on weight changes, the hope is that the resulting
ci-Ai pairs are close enough to the block structure
described above that it will be easy to extract a symbolic
description of the mapping.

The constraints described above, however, do not
guarantee that learning will produce weights that corre-
spond exactly to symbolic rules. However, using a pro-
cess we call projection, it is possible to transform the ci
and Ai weights such that the resulting network can be
interpreted as a set of symbolic rules.

Projection of ci involves setting non-essential weights

to zero, setting essential weights to 1, and setting θi to
zero if there is only one essential weight or if a disjunc-
tion is indicated, -1 otherwise. Because of the constraint
that only one unit per slot in the input can be on, it is
possible to subtract a value εα from slot α of ci and add
that value to θi without affecting the net input to condi-
tion unit i. This εα can be thought of as an irrelevant
component of each weight in slot α, a by-product of
learning. We estimate εα with a least squares procedure
and use it to adjust ci. The resulting ci is compared to
prototype models of simple, disjunctive, and conjunc-
tive conditions, and the closest model is taken as the
projected condition vector.

Projection on a matrix Ai requires finding the largest
block diagonal in Ai, located say, at block-row α and
block-column β, setting it to 1, and setting all other
blocks in block-row α and block-column β to zero. The
process is repeated until n blocks have been found (one
per symbol in the input/output strings). Action bias
strengths in a block-column are summed and treated as
any other block during this process. The biases them-
selves are projected by setting the maximum bias in
each slot to 1, and setting all other biases to zero. All
biases in a block-column β with a non-zero identity
block are also set to zero.

Simulations
Having described the projection technique for extracting
explicit rules from RuleNet, we turn to simulations of
the network. The simulations allow RuleNet to play the
Connectionist Scientist Game by iteratively extracting
rules and injecting them back into the network. To illus-
trate how this extraction-injection cycle improves
RuleNet’s performance, we compare learning perfor-
mance using this technique with learning using several
simpler techniques:
1) Technique J: Start with a fixed set of r rules, random
initial weights, and minimize the error function
described by Jacobs et al.
2) Technique JC: Learn as in technique J, but constrain
weights in Ai to a single parameter on block diagonals
as described above.
3) Technique JCA: Learn as in technique JC, but start
with one rule, learn for m epochs, then add a new rule
with random initial weights, and repeat until r-1 rules
have been added or perfect performance achieved.
4) Technique JCAP (the Connectionist Scientist Game):
Learn as in technique JCA, but before adding a new
rule, project weights in ci and Ai to conform exactly to
the closest valid rule.

In all simulations, the maximum number of rules
allowed was 10. In simulations using techniques JCA
and JCAP, a new rule was added after every 500 epochs.
All simulations ran for 5000 epochs and used a learning
rate of .009 on both Ai weights and ci weights. We tested
four different rule bases, consisting of eight, three, three,
and five rules (see Figure 2 for the rule templates) using

- 5 -

Simulation 1: 8 rules, 120 patterns

epochs

er
ro

r (
lo

g
sc

al
e)

J
JC

JCA

JCAP

Figure 2
Average RuleNet performance on four simulations using learning techniques J, JC, JCA, and JCAP.

Simulation 2: 3 rules, 45 patterns

Simulation 4: 5 rules, 75 patternsSimulation 3: 3 rules, 45 patterns

J

JC

JCA

JCAP

J

JC
JCA

JCAP

JC

J

JCA

JCAP

epochs

Key: J = Jacobs algorithm, C = constrain Aα to diagonals, A = add new rules, P = project.

[∧AC__→ 0132]
[___C →D021]
[∨ F__A→ 2103]

[B___ → 2310]
[∨AD__→ 3201]
[∧__BF → 1023]

[∧__GE → 1203]
[∧AC__→ 1023]
[___G → 0F12]
[∨E__D → 0123]
[∧_BC_ → 021B]
[_F__ → 2F03]
[___B → 1320]

[E___ → 1230]
[∧DA__→ 1032]
[∨__FC → 1302]
[∨BD__→ 3210]
[∨CC__ → 12F3]

into account. Recall that our criterion for an appropriate
set of rules was to find at most q rules, where q is the
size of the set used to generate the training corpus, such
that those rules completely describe every pattern in the
training set. Learning technique JCAP is certainly the
most effective judging by this criterion. In fact, tech-
nique JACP induces exactly the target number of rules
in every simulation, mapping all the patterns correctly.
JC maps patterns correctly, but at the expense of the
number of rules. In this domain at least, it appears that
RuleNet using technique JC makes use of approxi-
mately as many rules as one allows it. Technique JCA
comes closer to inducing the target number of rules, but
at the expense of consistent accuracy. Finally, technique
J leaves quite a bit to be desired in both the number of
valid rules extracted and the percentage of patterns cov-
ered.

Technique JCAP is essentially an implementation of
the Connectionist Scientist Game within the framework
of the RuleNet architecture. The Connectionist Scientist
Game involves iteratively forming a hypothesis set of
rules, testing these rules on exemplars, and then refining
the rules to yield better coverage of the exemplars. The
game is played until a satisfactory number of exemplars

strings of length four over the alphabet {A, B, C, D, E,
F, G, H}. For each rule base, a training set was formed
by generating fifteen random instances of each rule tem-
plate. Figure 2 shows the error curve for the four simula-
tions using learning techniques J, JC, JCA, and JCAP.
Each curve is an average over five runs with different
initial weights. The spikes in the curves for techniques
JCA and JCAP reflect the additional error when
RuleNet is allowed to make use of a new rule. In all four
cases the error for techniques J and JC is monotonically
decreasing; however, JC arrives at a consistently small
error, while the pure Jacobs network, technique J, does
not. There is a similar distinction between techniques
JCA and JCAP: JCAP arrives at a reasonable solution,
while JCA does not. In terms of learning speed and con-
vergence, techniques JC and JCAP are clearly prefera-
ble.

The question is, can a given learning technique be
relied upon to discover a valid set of rules? Table 1
shows the average number of valid rules extracted from
RuleNet after 5000 epochs and the percentage of the
training set mapped correctly to the output string in each
case. The critical measure of performance should take
both percentage of patterns and number of valid rules

- 6 -

Sim. Target # rules rules % rules % rules % rules %

1 8 2.4 17 9.5 99 6 69 8 100

2 3 1.4 10 9.5 100 3.8 95 3 100

3 3 1.4 28 9 100 3 100 3 100

4 5 3.6 34 9 100 5.2 100 5 100

Learning Technique
J JC JCAPJCA

Table 1
Average number of valid rules extracted and percentage of patterns covered to within an error of .5.

3

[∧B_H_ →1230]
[∧__FC →1302]

[E___ → 1230]
[∧DA__→ 1032]
[∨__FC → 1302]
[∨BD__→ 3210]
[∨CC__ → 12F3]

[∨BD__ →3210]
[∨ __FC →1302]
[∨ CC__ →12F3]
[∧ EA__→ 1230]

[∨BD__ →3210]
[∨ __FC →1302]
[∨ CC__ →12F3]
[E__ → 1230]
[∧ DA__→ 1032]

Template rules epoch 1000 epoch 1500 epoch 2000 epoch 2500
Valid Rules Learned and Percent of Training Set Covered Perfectly

Figure 3

 while playing the Connectionist Scientist Game.
Evolution of RuleNet’s hypothesis set of rules over 2500 training epochs

[∨BD__ →3210]
[∨ __FC →1302]
[∧ CC__ →1230]

3% 40% 64% 100%coverage of training set

is covered by the rules. Figure 3 shows a template of
five rules, used to generate a set of 75 exemplars, and
the evolution of the hypothesis set of rules learned by
RuleNet over 2500 training epochs. As in previous sim-
ulations, projection was done every 500 epochs. At the
first projection the initial rule is not syntactically valid.
The second projection, at 1000 epochs, results in two
valid rules which correctly mapped 3% of the patterns.
Subsequent iterations result in a more refined hypothe-
sis. It is interesting to note the metamorphosis of both
the set of rules and individual rules. For example, the
first valid rule learned, [∧ Β_Η_→1230], is modified
between the projection at 1000 and 1500 epochs to
[∨BD__→3210]. As new rules are added, the condition
and/or action components of old rules may be modified
to reflect a different set of exemplars for which they
must be accountable.

We have argued that learning rules can greatly
enhance generalization. Using technique JCAP, in all
four of the simulations reported above, ruleNet not only
learned a set of rules that correctly mapped the training
set, it also learned the exact rule templates used to gen-
erate that set. In cases where RuleNet learns the original
rule templates, it can be expected to generalize perfectly
to any pattern that can be generated by those templates,
as was shown in Table 1.

The degree to which generalization can be enhanced
is clearly illustrated in a comparison of the performance
of a standard three layer back-propagation network with
the performance of RuleNet using the JCAP learning

technique, as summarized in Table 2. In each of the four
simulations, the back-prop network had the same input
and output representation as RuleNet, with 15 hidden
units per rule (simulations were run with 5, 10, and 15
hidden units per rule; generalization performance was
best with 15). The learning rate used was .05, with a
momentum of .9. The training sets were the same as
reported in the RuleNet simulations and the numbers for
RuleNet are taken from Table 1. The test sets represent
the complete set of patterns that can be generated with
the rule templates, excluding patterns that fire more than
one template rule. During the back-prop simulations,
outputs were processed by setting the maximum unit in
each slot to 1 and all others to zero. The cleaned up out-
puts were compared to the targets to determine which
were mapped correctly. Values in Table 2 represent the
average over five runs with different initial weights.
RuleNet’s performance on the training set is equivalent
to that of the three layer back-prop net. Both learn the
training set perfectly. However, on the test set,
RuleNet’s ability to generalize is approximately 300%
to 2000% better than the standard 3-layer network.

As the results in Figure 2 and Tables 1 and 2 indicate,
playing the Connectionist Scientist Game allows
RuleNet to discover a set of symbolic rules that describe
a set of examples, and to do so more rapidly, reliably,
and with greater power to generalize than the other
methods examined.

- 7 -

.

Architecture train test train test train test train test

RuleNet (JCAP) 100 100 100 100 100 100 100 100

3-layer back-prop 100 27 100 7 100 14 100 35

of patterns in set 120 1635 45 1380 45 1380 75 1995

% of patterns correctly mapped

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Table 2
Generalization performance of RuleNet compared to a standard 3-layer back-prop network

with 15 hidden units per rule (120, 45, 45, and 75 hidden units for simulations 1-4, respectively).

RuleNet will learn to both classify input tokens (e.g.,
classifying instances such as boy, man, and woman into
the category human) and perform transformations of the
input that are based on the induced categories. This
involves subsymbolic processing—classification—as
well as symbolic processing—executing condition-
action rules. A unified framework that allows both types
of processing should be a significant step toward an
explanation of complex cognitive behaviors.

References
Booker, L.B., Goldberg, D.E., and Holland, J.H. 1989.
Classifier Systems and Genetic Algorithms, Artificial
Intelligence 40:235-282.
Fisher, D.H. 1987. Knowledge Acquisition via Incre-
mental Concept Clustering. Machine Learning 2:139-
172.
Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. 1991.
Adaptive Mixtures of Local Experts. Neural Computa-
tion, 3:79-87.
McMillan, C. & Smolensky, P. 1988. Analyzing a Con-
nectionist Network as a System of Soft Rules. In Pro-
ceedings of the 10th Conference of the Cognitive Sci-
ence Society, 62-68. Hilsdale, NJ: Laurence Erlbaum and
Associates.
Miikkulainen, R. & Dyer, M. 1988. Encoding Input/out-
put Representations in Connectionist Cognitive Systems.
In Proceedings of the 1988 Connectionist Summer
School.
Rumelhart, D., & McClelland, J., 1986. On Learning the
Past Tense of English Verbs. In J.L. McClelland, D.E.
Rumelhart, & the PDP Research Group, Parallel Dis-
tributed Processing: Explorations in the microstructure
of cognition.Vol. 2: Psychological and biological mod-
els, 216-271. Cambridge, MA: MIT Press/Bradford
Books.
Sejnowski, T. J. & Rosenberg, C. R. (1987). Parallel Net-
works that Learn to Pronounce English Text, Complex
Systems, 1: 145-168.
Smolensky, P. (1988). On the Proper Treatment of Con-
nectionism. The Behavioral and Brain Sciences. 11 (1).

Conclusion
We have proposed an iterative discovery process for
connectionist networks called the Connectionist Scien-
tist Game, and have explored an architecture, RuleNet,
that plays the Connectionist Scientist Game. RuleNet is
able to learn a set of explicit, symbolic rules from
scratch. These rules are useful because they accurately
and concisely characterize the domain from which train-
ing examples are drawn.

Although the end product of RuleNet is a set of rules,
RuleNet benefits from intermediate stages of learning in
which it is allowed to construct hypotheses that do not
correspond exactly to rules. That is, being a neural net-
work, RuleNet can represent a broader range of input/
output mappings than those permitted by symbolic rule-
based descriptions. We conjecture that RuleNet’s explo-
ration in this subsymbolic hypothesis space gives it an
additional degree of flexibility that facilitates learning,
even if the end product does not require this flexibility.
It is for this reason that we feel that connectionist learn-
ing techniques offer great promise in domains even
where the objective is to discover symbolic representa-
tions.

Our future work will concentrate on how to expand
this architecture to more challenging and complex
domains. One sense in which the symbol mapping
domain we have considered is too simplistic is that no
type/token distinction is made. The rules we have
defined are formulated directly in terms of input sym-
bols. However, much of the power of rules lies in their
ability to apply to a general symbol type, rather than just
to symbol tokens. For example, rather than inducing
rules that simply enumerate a collection of tokens, such
as if (subject = boy) then (perform action x), if (subject
= man) then (perform action x), if (subject = woman)
then (perform action x), it would be more useful to
induce a single rule that covers a type of condition, e.g.,
if (subject = human) then (perform action x). This task
requires that RuleNet learn not only the conditions and
actions that form a rule, but also a language in which to
redescribe the input symbols.

We are currently extending RuleNet to handle this
additional level of complexity. With this extension,

View publication statsView publication stats

https://www.researchgate.net/publication/2436050

